Skip to main content
Log in

Measurement-device-independent mutual quantum entity authentication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entity authentication (QEA) based on security guaranteed by the laws of physics is the first and most important step for secure communication under the threat of a quantum adversary. QEA theoretically provides unconditional security; however, there is a threat of quantum hacking owing to imperfection of measurement devices in the actual implementation. The proposed measurement-device-independent (MDI) mutual quantum entity authentication (MQEA) scheme guarantees its security under any quantum attacks on measuring devices that have been reported. Using the MDI architecture in our scheme, the third party can only know the correlation of the transmitted qubits through the Bell state measurement, and it cannot obtain the secret key information. In order to confirm the security of the proposed scheme, we present a security analysis of secret key information that is pre-shared among legitimate users, and we analyze Eve’s impersonation attack. Furthermore, we compare the MDI MQEA with other existing QEA schemes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62(2), 022305 (2000)

    Article  ADS  Google Scholar 

  2. Zhou, N., Zeng, G., Zeng, W., Zhu, F.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254(4–6), 380–388 (2005)

    Article  ADS  Google Scholar 

  3. Shi, W.-M., Zhou, Y.-H., Yang, Y.-G.: Quantum deniable authentication protocol. Quantum Inf. Process. 13(7), 1501–1510 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. Kang, M.-S., Hong, C.-H., Heo, J., Lim, J.-I., Yang, H.-J.: Controlled mutual quantum entity authentication using entanglement swapping. Chin. Phys. B 24(9), 090306 (2015)

    Article  Google Scholar 

  5. Huang, W., Xu, B.-J., Duan, J.-T., Liu, B., Su, Q., He, Y.-H., Jia, H.-Y.: Authenticated quantum key distribution with collective detection using single photons. Int. J. Theor. Phys. 55(10), 4238–4256 (2016)

    Article  Google Scholar 

  6. Hong, C.-h, Heo, J., Jang, J.-G., Kwon, D.: Quantum identity authentication with single photon. Quantum Inf. Process. 16(10), 236 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Kang, M.-S., Heo, J., Hong, C.-h, Yang, H.-J., Han, S.-W., Moon, S.: Controlled mutual quantum entity authentication with an untrusted third party. Quantum Inf. Process. 17(7), 159 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wang, Q., Zhang, S., Wang, S.-l, Shi, R.-h: Comment on “controlled mutual quantum entity authentication with an untrusted third party.” Quantum Inf. Process. 19(4), 125 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kang, M.-S., Heo, J., Hong, C.-h, Yang, H.-J., Han, M.S., Moon, S., Han, S.-W.: Response to “comment on ‘controlled mutual quantum entity authentication with an untrusted third party.’” Quantum Inf. Process. 19(4), 124 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Choi, J.-W., Kang, M.-S., Heo, J., Hong, C.-h, Yoon, C.-S., Han, S.-W., Moon, S., Yang, H.-J.: Quantum challenge-response identification using single qubit unitary operators. Physica Scr. 95(10), 105104 (2020)

    Article  ADS  Google Scholar 

  11. Zhang, S., et al.: A novel quantum identity authentication based on Bell states. Int. J. Theor. Phys. 59(1), 236–249 (2020)

    Article  MathSciNet  Google Scholar 

  12. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74(2), 022313 (2006)

    Article  ADS  Google Scholar 

  13. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686 (2010)

    Article  ADS  Google Scholar 

  14. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)

    Article  ADS  Google Scholar 

  15. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 110501 (2011)

    Article  ADS  Google Scholar 

  16. Weier, H., Krauss, H., Rau, M., Fürst, M., Nauerth, S., Weinfurter, H.: Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors. New J. Phys. 13(7), 073024 (2011)

    Article  ADS  Google Scholar 

  17. Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: After-gate attack on a quantum cryptosystem. New J. Phys. 13(1), 013043 (2011)

    Article  ADS  Google Scholar 

  18. Bugge, A.N., Sauge, S., Ghazali, A.M.M., Skaar, J., Lydersen, L., Makarov, V.: Laser damage helps the eavesdropper in quantum cryptography. Phys. Rev. Lett. 112(7), 070503 (2014)

    Article  ADS  Google Scholar 

  19. Makarov, V., Bourgoin, J.-P., Chaiwongkhot, P., Gagné, M., Jennewein, T., Kaiser, S., Kashyap, R., Legré, M., Minshull, C., Sajeed, S.: Creation of backdoors in quantum communications via laser damage. Phys. Rev. A 94(3), 030302 (2016)

    Article  ADS  Google Scholar 

  20. Lee, M.-S., Woo, M.-K., Jung, J., Kim, Y.-S., Han, S.-W., Moon, S.: Free-space QKD system hacking by wavelength control using an external laser. Opt. Express 25(10), 11124–11131 (2017)

    Article  ADS  Google Scholar 

  21. Lee, M.-S., Woo, M.-K., Kim, Y.-S., Cho, Y.-W., Han, S.-W., Moon, S.: Quantum hacking on a free-space quantum key distribution system without measuring quantum signals. JOSA B 36(3), B77–B82 (2019)

    Article  Google Scholar 

  22. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  23. Puthoor, I.V., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94(2), 022328 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Tang, Y.-L., Yin, H.-L., Zhao, Q., Liu, H., Sun, X.-X., Huang, M.-Q., Zhang, W.-J., Chen, S.-J., Zhang, L., You, L.-X.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6(1), 011024 (2016)

    Google Scholar 

  25. Choi, Y.-j, Kwon, O.-s, Woo, M.-K., Oh, K.-h, Han, S.-W., Kim, Y.-S., Moon, S.: Plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 93(3), 032319 (2016)

    Article  ADS  Google Scholar 

  26. Roberts, G., Lucamarini, M., Yuan, Z., Dynes, J., Comandar, L., Sharpe, A., Shields, A., Curty, M., Puthoor, I., Andersson, E.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8(1), 1–7 (2017)

    Article  Google Scholar 

  27. Maitra, A.: Measurement device-independent quantum dialogue. Quantum Inf. Process. 16(12), 305 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Park, Ch., Woo, M.K., Park, B.K., Lee, M.S., Kim, Y.-S., Cho, Y.-W., Kim, Y.-S., Han, S.-W., Moon, S.: Practical plug-and-play measurement-device-independent quantum key distribution with polarization division multiplexing. IEEE Access 6, 58587–58593 (2018)

    Article  Google Scholar 

  29. Niu, P.-H., Zhou, Z.-R., Lin, Z.-S., Sheng, Y.-B., Yin, L.-G., Long, G.-L.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)

    Article  Google Scholar 

  30. Liang, W., Xue, Q., Jiao, R.: The performance of three-intensity decoy-state measurement-device-independent quantum key distribution. Quantum Inf. Process. 19, 1–9 (2020)

    Article  MathSciNet  Google Scholar 

  31. Lo, H.-K., Preskill, J.: Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Inf. Comput. 7(5 & 6), 431–458 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Divochiy, A., et al.: Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat. Photonics 2(5), 302–306 (2008)

    Article  Google Scholar 

  33. Kardynał, B.E., Yuan, Z.L., Shields, A.J.: An avalanche-photodiode-based photon-number-resolving detector. Nat. Photon. 2(7), 425–428 (2008)

    Article  Google Scholar 

  34. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135 (2007)

    Article  ADS  Google Scholar 

  35. Kok, P.: Photonic quantum information processing. Contemp. Phys. 57(4), 526–544 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (2019R1A2C2006381, 2019M3E4A107866011, 2019M3E4A1079777); the Korea Institute of Science and Technology (KIST) (2E29580); and Institute for Information and Communications Technology Promotion (2020-0-00947, 2020-0-00972).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung-Jin Yang or Sang-Wook Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JW., Kang, MS., Park, C.H. et al. Measurement-device-independent mutual quantum entity authentication. Quantum Inf Process 20, 152 (2021). https://doi.org/10.1007/s11128-021-03093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03093-1

Keywords

Navigation