Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of the geometric phase from quantum measurement back-action

Abstract

The state vector representing a quantum system acquires a phase factor following an adiabatic evolution along a closed trajectory in phase space. This is the traditional example of a geometric phase, or Pancharatnam–Berry phase, a concept that has now been generalized beyond cyclic adiabatic evolutions to include generalized quantum measurements, and that has been experimentally measured in a variety of physical systems. However, a clear description of the relationship between the emergence of a geometric phase and the effects of a series of generalized quantum measurements on a quantum system has not yet been provided. Here we report that a sequence of weak measurements with continuously variable measurement strengths in a quantum optics experiment conclusively reveals that the quantum measurement back-action is the source of the geometric phase—that is, the stronger a quantum measurement, the larger the accumulated geometric phase. We furthermore find that in the limit of strong (projective) measurement there is a direct connection between the geometric phase and the sequential weak value, ordinarily associated with a series of weak quantum measurements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual representation of the geometric phase due to quantum measurement back-action.
Fig. 2: Schematic of the experiment.
Fig. 3: Extraction of the geometric phase.
Fig. 4: Emergence of the geometric phase from quantum measurement back-action.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Berry, M. V. Quantum phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  ADS  Google Scholar 

  2. Pancharatnam, S. Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. Sect. A 44, 247–262 (1956).

    Article  MathSciNet  Google Scholar 

  3. Berry, M. V. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  4. Aharonov, Y. & Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  5. Jordan, T. F. Berry phases for partial cycles. Phys. Rev. A 38, 1590–1592 (1988).

    Article  ADS  Google Scholar 

  6. Weinfurter, H. & Badurek, G. Measurement of Berry’s phase for noncyclic evolution. Phys. Rev. Lett. 64, 1318–1321 (1990).

    Article  ADS  Google Scholar 

  7. Samuel, J. & Bhandari, R. General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339–2342 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  8. Cassinelli, G., De Vito, E., Lahti, P. & Levrero, A. Geometric phase and sequential measurements in quantum mechanics. Phys. Rev. A 49, 3229–3233 (1994).

    Article  ADS  Google Scholar 

  9. Sjöqvist, E. et al. Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845–2848 (2000).

    Article  ADS  Google Scholar 

  10. Kendric, B. K., Hazra, J. & Balakrishnan, N. The geometric phase controls ultracold chemistry. Nat. Commun. 6, 7918 (2015).

    Article  ADS  Google Scholar 

  11. Kenney, M. et al. Pancharatnam–Berry phase induced spin-selective transmission in herringbone dielectric metamaterials. Adv. Mater. 28, 9567–9572 (2016).

    Article  Google Scholar 

  12. Abdumalikov, A. A. Jr et al. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013).

    Article  ADS  Google Scholar 

  13. Sjöqvist, E. A new phase in quantum computation. Physics 1, 35 (2008).

    Article  Google Scholar 

  14. Loredo, J. C., Broome, M. A., Smith, D. H. & White, A. G. Observation of entanglement-dependent two-particle holonomic phase. Phys. Rev. Lett. 112, 143603 (2014).

    Article  ADS  Google Scholar 

  15. Laing, A., Lawson, T., López, E. M. & O’Brien, J. L. Observation of quantum interference as a function of Berry’s phase in a complex Hadamard optical network. Phys. Rev. Lett. 108, 260505 (2012).

    Article  ADS  Google Scholar 

  16. Ericsson, M. et al. Measurement of geometric phase for mixed states using single photon interferometry. Phys. Rev. Lett. 94, 050401 (2005).

    Article  ADS  Google Scholar 

  17. Kwiat, P. G. & Chiao, R. Y. Observation of a nonclassical Berry’s phase for the photon. Phys. Rev. Lett. 66, 588–591 (1991).

    Article  ADS  Google Scholar 

  18. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  19. Leek, P. J. et al. Observation of Berry’s phase in a solid-state qubit. Science 318, 1889–1892 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  20. Leonard, J. R. et al. Pancharatnam–Berry phase in condensate of indirect excitons. Nat. Commun. 9, 2158 (2018).

    Article  ADS  Google Scholar 

  21. Yale, C. G. et al. Optical manipulation of the Berry phase in a solid-state spin qubit. Nat. Photon. 10, 184–189 (2016).

    Article  ADS  Google Scholar 

  22. Hatridge, M. et al. Quantum back-action of an individual variable-strength measurement. Science 339, 178–181 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  23. Baek, S.-Y., Cheong, Y. W. & Kim, Y.-H. Minimum-disturbance measurement without postselection. Phys. Rev. A 77, 060308(R) (2008).

    Article  ADS  Google Scholar 

  24. Lim, H.-T. et al. Fundamental bounds in measurements for estimating quantum states. Phys. Rev. Lett. 113, 020504 (2014).

    Article  ADS  Google Scholar 

  25. Aharonov, Y., Kaufherr, T., Popescu, S. & Reznik, B. Quantum measurement backreaction and induced topological phases. Phys. Rev. Lett. 80, 2023–2026 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  26. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  27. Sjöqvist, E. Geometric phase in weak measurement. Phys. Lett. A 359, 187–189 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  28. Tamate, S. et al. Geometrical aspects of weak measurements and quantum erasers. New J. Phys. 11, 093025 (2009).

    Article  ADS  Google Scholar 

  29. Cormann, M. & Caudano, Y. Geometric description of modular and weak values in discrete quantum systems using the Majorana representation. J. Phys. A 50, 305302 (2017).

    Article  MathSciNet  Google Scholar 

  30. Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).

    Article  ADS  Google Scholar 

  31. Cho, Y.-W., Lim, H.-T., Ra, Y.-S. & Kim, Y.-H. Weak value measurement with an incoherent measuring device. New. J. Phys. 12, 023036 (2010).

    Article  ADS  Google Scholar 

  32. Dressel, J. et al. Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys. 86, 307–316 (2014).

    Article  ADS  Google Scholar 

  33. Jordan, A. N. & Korotkov, A. N. Qubit feedback and control with kicked quantum nondemolition measurements: a quantum Bayesian analysis. Phys. Rev. B 74, 085307 (2006).

    Article  ADS  Google Scholar 

  34. Dressel, J., Agarwal, S. & Jordan, A. N. Contextual values of observables in quantum measurements. Phys. Rev. Lett. 104, 240401 (2010).

    Article  ADS  Google Scholar 

  35. Kim, Y. et al. Direct quantum process tomography via measuring sequential weak values of incompatible observables. Nat. Commun. 9, 192 (2018).

    Article  ADS  Google Scholar 

  36. Brodutch, A. & Cohen, E. Nonlocal measurements via quantum erasure. Phys. Rev. Lett. 116, 070404 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  37. Pryde, G. J. et al. Measurement of quantum weak values of photon polarization. Phys. Rev. Lett. 94, 239904 (2005).

    Article  ADS  Google Scholar 

  38. Facchi, P., Klein, A. G., Pascazio, S. & Schulman, L. S. Berry phase from a quantum Zeno effect. Phys. Lett. A 257, 232–240 (1999).

    Article  ADS  Google Scholar 

  39. Wong, H. M., Cheng, K. M. & Chu, M.-C. Quantum geometric phase between orthogonal states. Phys. Rev. Lett. 94, 070406 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  40. Patel, A. & Kumar, P. Weak measurements, quantum-state collapse, and the Born rule. Phys. Rev. A 96, 022108 (2017).

    Article  ADS  Google Scholar 

  41. Camacho, R. M. et al. Realization of an all-optical zero to π cross-phase modulation jump. Phys. Rev. Lett. 102, 013902 (2009).

    Article  ADS  Google Scholar 

  42. Curic, D. et al. Experimental investigation of measurement-induced disturbance and time symmetry in quantum physics. Phys. Rev. A 97, 042128 (2018).

    Article  ADS  Google Scholar 

  43. Bednorz, A., Franke, K. & Belzig, W. Noninvasiveness and time symmetry of weak measurements. New J. Phys. 15, 023043 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  44. Dressel, J. & Jordan, A. N. Weak values are universal in von Neumann measurements. Phys. Rev. Lett. 109, 230402 (2012).

    Article  ADS  Google Scholar 

  45. Vallone, G. & Dequal, D. Strong measurements give a better direct measurement of the quantum wave function. Phys. Rev. Lett. 116, 040502 (2016).

    Article  ADS  Google Scholar 

  46. Denkmayr, T. et al. Experimental demonstration of direct path state characterization by strongly measuring weak values in a matter-wave interferometer. Phys. Rev. Lett. 118, 010402 (2017).

    Article  ADS  Google Scholar 

  47. Cohen, E. & Pollak, E. Determination of weak values of quantum operators using only strong measurements. Phys. Rev. A 98, 042112 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  48. Calderaro, L. et al. Direct reconstruction of the quantum density matrix by strong measurements. Phys. Rev. Lett. 121, 230501 (2018).

    Article  ADS  Google Scholar 

  49. Thekkadath, G. S. et al. Direct measurement of the density matrix of a quantum system. Phys. Rev. Lett. 117, 120401 (2016).

    Article  ADS  Google Scholar 

  50. Mitchison, G., Jozsa, R. & Popescu, S. Sequential weak measurement. Phys. Rev. A 76, 062105 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the KIST institutional programmes (project nos 2E29580 and 2E27800-18-P044), by the ICT R&D programme of MSIP/IITP (grant no. B0101-16-1355) and by the National Research Foundation of Korea (grant nos 2016R1A2A1A05005202 and 2016R1A4A1008978). Y.K. acknowledges support from the Global PhD Fellowship by the National Research Foundation of Korea (grant no. 2015H1A2A1033028).

Author information

Authors and Affiliations

Authors

Contributions

Y.-W.C and Y.-H.K planned and supervised the research. Y.-W.C designed the experiment. Y.K., Y.-H.C., Y.-W.C. and Y.-S.K. performed the experiment. Y.-W.C., Y.K. and Y.-H.K. carried out the theoretical calculations, analysed data and discussed the results. Y.-S.K., Y.-H.C. S.-W.H., S.-Y.L. and S.M. contributed to the analysis and discussion of the results. Y.-W.C, Y.K. and Y.-H.K wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Young-Wook Cho or Yoon-Ho Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Andrew Jordan and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, YW., Kim, Y., Choi, YH. et al. Emergence of the geometric phase from quantum measurement back-action. Nat. Phys. 15, 665–670 (2019). https://doi.org/10.1038/s41567-019-0482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0482-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing