Skip to main content
Log in

Controlled mutual quantum entity authentication with an untrusted third party

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a quantum control entity mutual authentication protocol that can be executed in environments involving an untrusted third party. In general, the third party, referred to as Charlie, can be an entity such as a telephone company, server, financial company, or login webpage for a portal service. Most communication protocols controlled by third parties are vulnerable to internal attacks. In this study, we present two solutions that make use of an entanglement correlation checking method and random numbers against an internal attack by an untrusted third party.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  5. Tang, Y.L., Yin, H.L., Chen, S.J., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 114, 069901 (2015)

    Article  ADS  Google Scholar 

  6. He, J., Li, Q., Wu, C., Chan, W.H., Zhang, S.: Measurement-device-independent semiquantum key distribution. Int. J. Quantum Inf. 16, 1850012 (2018)

    Article  Google Scholar 

  7. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  9. Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893–897 (2005)

    Article  ADS  Google Scholar 

  10. Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, X.W., Su, Y.H., Yang, G.J.: Controlled teleportation against uncooperation of part of supervisors. Quantum Inf. Process. 8, 319–330 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, T.Y., Wen, Q.Y.: Controlled quantum teleportation with Bell states. Chin. Phys. B 20(4), 040307 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  15. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum–secret–sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  16. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  17. Deng, F.G., Li, X.H., Zhou, H.Y.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  18. Li, X.H., Zhou, P., Li, C.Y., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B: At. Mol. Opt. Phys. 39(8), 1975–1983 (2006)

    Article  ADS  Google Scholar 

  19. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Efficient multiparty quantum secret sharing with Greenberger-Horne-Zeilinger States. Chin. Phys. Lett. 23(5), 1084–1087 (2006)

    Article  ADS  Google Scholar 

  20. Hsieh, C.R., Tsai, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019–1022 (2010)

    Article  MATH  Google Scholar 

  21. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365–380 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Chen, X.B., Xu, G., Su, Y., Yang, Y.X.: Robust variations of secret sharing through noisy quantum channel. Quantum Inf. Comput. 14(78), 589–607 (2014)

    MathSciNet  Google Scholar 

  23. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22(1), 18–21 (2005)

    Article  ADS  Google Scholar 

  24. Gao, T., Yan, F.L., Wang, Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A 38, 5761 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Wang, C., Deng, F., Long, G.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  26. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    Article  ADS  Google Scholar 

  27. Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1), 67–70 (2006)

    Article  ADS  Google Scholar 

  28. Man, Z.-X., Xia, Y.-J., An, N.B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B: At. Mol. Opt. Phys. 39, 3855–3864 (2006)

    Article  ADS  Google Scholar 

  29. Kao, S.H., Hwang, T.: Cryptanalysis and improvement of controlled secure direct communication. Chin. Phys. B 22, 060308 (2013)

    Article  ADS  Google Scholar 

  30. Dong, L., Xiu, X.M., Gao, Y.J., Ren, Y.P., Liu, H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284, 905–908 (2011)

    Article  ADS  Google Scholar 

  31. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285–288 (2006)

    Article  ADS  Google Scholar 

  32. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325–2342 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zhou, N.R., Cheng, H.L., Tao, X.Y., Gong, L.H.: Three-party remote state preparation schemes based on entanglement. Quantum Inf. Process. 13, 513 (2014)

    Article  ADS  MATH  Google Scholar 

  34. Chen, X.-B., Dou, Z., Xu, G., Wang, C., Yang, Y.: A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf. Process. 13, 85 (2014)

    Article  ADS  MATH  Google Scholar 

  35. Wei, Z.H., Chen, X.B., Niu, X.X., et al.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54(8), 2505–2515 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, G., Chen, X.-B., Dou, Z., Yang, Y.-X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14, 2959–2980 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Peev, M., Pacher, C., Alléaume, R., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)

    Article  ADS  Google Scholar 

  38. Sasaki, M., Fujiwara, M., Ishizuka, H., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011)

    Article  ADS  Google Scholar 

  39. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)

    Article  Google Scholar 

  40. Fröhlich, B., Dynes, J.F., Lucamarini, M., Sharpe, A.W., Yuan, Z., Shields, A.J.: A quantum access network. Nature 501(7465), 69–72 (2013)

    Article  ADS  Google Scholar 

  41. Tang, Y.-L., Yin, H.-L., Zhao, Q., et al.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6, 011024 (2016)

    Google Scholar 

  42. Hong, C.H., Heo, J., Khym, G.L., Lim, J.I., Hong, S.K., Yang, H.J.: N quantum channels are sufficient for multi-user quantum key distribution protocol between n users. Opt. Commun. 283, 2644 (2010)

    Article  ADS  Google Scholar 

  43. Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: A quantum network system of QSS-QDC using χ-type entangled states. Chin. Phys. Lett. 29, 050303 (2012)

    Article  Google Scholar 

  44. Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Multi-user quantum network system and quantum communication using χ-type entangled states. J. Korean. Phys. Soc. 61, 1–5 (2012)

    Article  ADS  Google Scholar 

  45. Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Quantum secure direct communication network with hyperentanglement. Chin. Phys. B 23, 090309 (2014)

    Article  Google Scholar 

  46. Li, J., Chen, X.B., Xu, G., et al.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19, 115–118 (2015)

    Article  Google Scholar 

  47. Broadbent, A.J., Fitzsimons, F., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, p. 517. IEEE Computer Society, Los Alamitos (2009)

  48. Li, Q., Li, Z., Chan, W.H., Zhang, S., Liu, C.: Blind quantum computation with identity authentication. Phys. Lett. A 382, 938 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  49. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security, pp. 113–124 (2011)

  50. Tebaa, M., El Hajji, S., El Ghazi, A.: Homomorphic encryption applied to the cloud computing security. Proc. World Congr. Eng. 1, 4–6 (2012)

    Google Scholar 

  51. Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Controlled mutual quantum entity authentication using entanglement swapping. Chin. Phys. B 24, 090306 (2015)

    Article  Google Scholar 

  52. Gao, G., Wang, Y.: Cryptanalysis of controlled mutual quantum entity authentication using entanglement swapping. Commun. Theor. Phys. 67(1), 33–36 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  53. Ingemarsson, I., Simmons, G.J.: A protocol to set up shared secret schemes without the assistance of a mutually trusted party. In: Advances in Cryptology—Proceedings of Eurocrypt’90, pp. 266–282. Springer, Berlin (1991)

  54. Gao, G., Fang, M., Cheng, M.T.: Cryptanalysis and improvement of a quantum network system of QSS-QDC using chi-type entangled states. Chin. Phys. Lett. 29, 110305 (2012)

    Article  ADS  Google Scholar 

  55. Heo, J., Kang, M.S., Hong, C.H., Yang, H., Choi, S.G.: Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication. Quantum Inf. Process. 16, 24 (2017)

    Article  ADS  MATH  Google Scholar 

  56. Heo, J., Kang, M.S., Hong, C.H., Choi, S.G., Hong, J.P.: Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities. Opt. Commun. 396, 239 (2017)

    Article  ADS  Google Scholar 

  57. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  58. Li, C.Y., Li, X.H., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)

    Article  ADS  Google Scholar 

  59. Yoon, C.S., Kang, M.S., Lim, J.I., Yang, H.J.: Quantum signature scheme based on a quantum search algorithm. Phys. Scr. 90, 015103 (2015)

    Article  ADS  Google Scholar 

  60. Hong, C.H., Lim, J.I., Kim, J.I., Yang, H.J.: Two-way quantum direct communication protocol using entanglement swapping. Korean Phys. Soc. 56, 1733 (2010)

    Article  Google Scholar 

  61. Hong, C.H., Heo, J., Jang, J.G., Kwon, D.: Quantum identity authentication with single photon. Quantum Inf. Process. 16(10), 236–2181 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the ICT R&D programs of MSIP/IITP (Grant No. B0101-16-1355), the KIST research program (Grant No. 2E27801). C.-H. Hong is supported by the ICT R&D program of MSIP/IITP [1711057505, Reliable crypto-system standards and core technology development for secure quantum key distribution network].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, MS., Heo, J., Hong, CH. et al. Controlled mutual quantum entity authentication with an untrusted third party. Quantum Inf Process 17, 159 (2018). https://doi.org/10.1007/s11128-018-1927-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1927-5

Keywords

Navigation