Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Material platforms for spin-based photonic quantum technologies

Abstract

A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light–matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light–matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light–matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed quantum Internet.
Fig. 2: Physical architecture of quantum repeaters.
Fig. 3: Targeted incorporation of diamond quantum colour centres into cavities.
Fig. 4: Defect centres in SiC for quantum applications.
Fig. 5: Localized emission in layered materials.
Fig. 6: Controlling emission in layered materials.

Similar content being viewed by others

References

  1. De Greve, K. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  CAS  Google Scholar 

  2. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    Article  CAS  Google Scholar 

  3. Schaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

    Article  CAS  Google Scholar 

  4. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    Article  CAS  Google Scholar 

  5. Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 10503 (2017).

    Article  CAS  Google Scholar 

  6. Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).

    Article  CAS  Google Scholar 

  7. He, Y. et al. Quantum state transfer from a single photon to a distant quantum-dot electron spin. Phys. Rev. Lett. 119, 60501 (2017).

    Article  Google Scholar 

  8. Varnava, C. et al. An entangled-LED-driven quantum relay over 1 km. Quantum Inform. 2, 16006 (2016).

    Article  Google Scholar 

  9. Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015).

    Article  CAS  Google Scholar 

  10. Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).

    Article  CAS  Google Scholar 

  11. Bechtold, A. et al. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot. Nat. Phys. 11, 1005–1008 (2015).

    Article  CAS  Google Scholar 

  12. Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

    Article  CAS  Google Scholar 

  13. Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 7, 11526 (2016).

    Article  CAS  Google Scholar 

  14. Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    Article  CAS  Google Scholar 

  15. Muralidharan, S. et al. Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016).

    Article  CAS  Google Scholar 

  16. Stinaff, E. A. et al. Optical signatures of coupled quantum dots. Science 311, 636–639 (2006).

    Article  CAS  Google Scholar 

  17. Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

    Article  CAS  Google Scholar 

  18. Acosta, V. & Hemmer, P. Nitrogen-vacancy centers: physics and applications. MRS Bull. 38, 127–130 (2013).

    Article  CAS  Google Scholar 

  19. Doherty, M. W. et al. Theory of the ground-state spin of the NV center in diamond. Phys. Rev. B 85, 205203 (2012).

    Article  CAS  Google Scholar 

  20. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  CAS  Google Scholar 

  21. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013).

    Article  CAS  Google Scholar 

  22. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article  CAS  Google Scholar 

  23. Abobeih, M. H. et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Preprint at arXiv, 1801.01196 (2018).

  24. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  25. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    Article  CAS  Google Scholar 

  26. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  CAS  Google Scholar 

  27. Gottesman, D. Fault-tolerant quantum computation with constant overhead. Quantum. Inf. Comput. 14, 1338–1372 (2013).

    Google Scholar 

  28. Nickerson, N. H., Fitzsimons, J. F. & Benjamin, S. C. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 41041 (2014).

    Google Scholar 

  29. Cabrillo, C., Cirac, J. I., Garc’\ia-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).

    Article  CAS  Google Scholar 

  30. Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters. Phys. Rev. A 72, 52330 (2005).

    Article  CAS  Google Scholar 

  31. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 60310 (2005).

    Article  CAS  Google Scholar 

  32. Pant, M., Choi, H., Guha, S. & Englund, D. Percolation based architecture for cluster state quantum computation using photon-mediated entanglement between atomic memories. Preprint at arXiv, 1704.07292 (2017).

  33. Nemoto, K. et al. Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 31022 (2014).

    Google Scholar 

  34. Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    Article  CAS  Google Scholar 

  35. Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    Article  Google Scholar 

  36. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    Article  CAS  Google Scholar 

  37. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 13904 (2005).

    Article  CAS  Google Scholar 

  38. Englund, D. et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010).

    Article  CAS  Google Scholar 

  39. van der Sar, T. et al. Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system. Appl. Phys. Lett. 98, 193103 (2011).

    Article  CAS  Google Scholar 

  40. Wolters, J. et al. Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010).

    Article  CAS  Google Scholar 

  41. Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat. Phot. 5, 301–305 (2011).

    Article  CAS  Google Scholar 

  42. Thomas, N., Barbour, R. J., Song, Y., Lee, M. L. & Fu, K.-M. C. Waveguide-integrated single-crystalline GaP resonators on diamond. Opt. Express 22, 13555–13564 (2014).

    Article  CAS  Google Scholar 

  43. Riedrich-Moller, J. et al. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotechnol. 7, 69–74 (2012).

    Article  CAS  Google Scholar 

  44. Hausmann, B. J. M. et al. Coupling of NV centers to photonic crystal nanobeams in diamond. Nano Lett. 13, 5791–5796 (2013).

    Article  CAS  Google Scholar 

  45. Li, L. et al. Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015).

    Article  CAS  Google Scholar 

  46. Faraon, A., Santori, C., Huang, Z., Acosta, V. M. & Beausoleil, R. G. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 33604 (2012).

    Article  CAS  Google Scholar 

  47. Riedel, D. et al. Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).

    Google Scholar 

  48. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    Article  CAS  Google Scholar 

  49. Dousse, A. et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett. 101, 267404 (2008).

    Article  CAS  Google Scholar 

  50. Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261903–261909 (2005).

    Article  CAS  Google Scholar 

  51. Naydenov, B. et al. Engineering single photon emitters by ion implantation in diamond. Appl. Phys. Lett. 95, 181109 (2009).

    Article  CAS  Google Scholar 

  52. Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

    Article  CAS  Google Scholar 

  53. Riedrich-Möller, J. et al. Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond. Appl. Phys. Lett. 106, 221103 (2015).

    Article  CAS  Google Scholar 

  54. Schröder, T. et al. Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation. Opt. Mater. Express 7, 1514–1524 (2017).

    Article  Google Scholar 

  55. Schukraft, M. et al. Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides. APL Photon. 1, 020801 (2016).

    Article  CAS  Google Scholar 

  56. Lesik, M. et al. Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology. Phys. Status Solidi 210, 2055–2059 (2013).

    Article  CAS  Google Scholar 

  57. Tamura, S. et al. Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation. Appl. Phys. Express 7, 115201 (2014).

    Article  CAS  Google Scholar 

  58. Schröder, T. et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat. Commun. 8, 15376 (2017).

    Article  CAS  Google Scholar 

  59. Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum optical networks. Science 354, 847–850 (2016).

    Article  CAS  Google Scholar 

  60. Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 73003 (2016).

    Article  CAS  Google Scholar 

  61. Mower, J., Harris, N. C., Steinbrecher, G. R., Lahini, Y. & Englund, D. High-fidelity quantum state evolution in imperfect photonic integrated circuits. Phys. Rev. A 92, 32322 (2015).

    Article  CAS  Google Scholar 

  62. Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).

    Article  Google Scholar 

  63. Mouradian, S. L. et al. Scalable integration of long-lived quantum memories into a photonic circuit. Phys. Rev. X 5, 31009 (2015).

    Google Scholar 

  64. Zadeh, I. E. et al. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 16, 2289–2294 (2016).

    Article  CAS  Google Scholar 

  65. Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).

    Article  CAS  Google Scholar 

  66. Digeronimo, G. E. et al. Integration of single-photon sources and detectors on GaAs. Photonics 3, 55 (2016).

    Article  CAS  Google Scholar 

  67. Kim, J.-H. et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394–7400 (2017).

    Article  CAS  Google Scholar 

  68. Wang, C., Kurtsiefer, C., Weinfurter, H. & Burchard, B. Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B At. Mol. Opt. Phys. 39, 37 (2006).

    Article  CAS  Google Scholar 

  69. Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).

    Article  CAS  Google Scholar 

  70. Becker, J. N., Görlitz, J., Arend, C., Markham, M. & Becher, C. Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond. Nat. Commun. 7, 13512 (2016).

    Article  CAS  Google Scholar 

  71. Zhang, J. ~L. et al. Complete coherent control of silicon-vacancies in diamond nanopillars containing single defect centers. Optica 4, 1317–1321 (2017).

    Article  Google Scholar 

  72. Müller, T. et al. Optical signatures of silicon-vacancy spins in diamond. Nat. Commun. 5, 3328 (2014).

    Article  CAS  Google Scholar 

  73. Pingault, B. et al. Coherent control of the silicon-vacancy spin in diamond. Nat. Commun. 8, 15579 (2017).

    Article  CAS  Google Scholar 

  74. Pingault, B. et al. All-optical formation of coherent dark states of silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263601 (2014).

    Article  CAS  Google Scholar 

  75. Rogers, L. J. et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263602 (2014).

    Article  CAS  Google Scholar 

  76. Sukachev, D. D. et al. Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 119, 223602 (2017).

    Article  CAS  Google Scholar 

  77. Sohn, Y.-I. et al. Controlling the coherence of a diamond spin qubit through strain engineering. Preprint at arXiv, 1706.03881 (2017).

  78. Rose, B. C. et al. Observation of an environmentally insensitive solid state spin defect in diamond. Preprint at arXiv, 1706.01555 (2017).

  79. Green, B. L. et al. The neutral silicon-vacancy center in diamond: spin polarization and lifetimes. Phys. Rev. Lett. 119, 096402 (2017).

  80. Iwasaki, T. et al. Germanium-vacancy single color centers in diamond. Sci. Rep. 5, 12882 (2015).

    Article  CAS  Google Scholar 

  81. Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).

    Article  CAS  Google Scholar 

  82. Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513 (2010).

    Article  Google Scholar 

  83. Melinon, P., Masenelli, B., Tournus, F. & Perez, A. Playing with carbon and silicon at the nanoscale. Nat. Mater. 6, 479–490 (2007).

    Article  CAS  Google Scholar 

  84. Uzan-Saguy, C. et al. Damage threshold for ion-beam induced graphitization of diamond. Appl. Phys. Lett. 67, 1194 (1995).

    Article  CAS  Google Scholar 

  85. Kimoto, T. & Cooper, J. A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. (John Wiley & Sons, 2014).

  86. Baliga, B. J. Silicon Carbide Power Devices. (World Scientific, 2005).

  87. Sarro, P. M. Silicon carbide as a new MEMS technology. Sens. Actuators A-Phys. 82, 210–218 (2000).

    Article  CAS  Google Scholar 

  88. Wright, N. G. & Horsfall, A. B. SiC sensors: a review. J. Phys. D. Appl. Phys. 40, 6345 (2007).

    Article  CAS  Google Scholar 

  89. Saddow, S. E. Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications. (Elsevier, 2012).

  90. Janzén, E. et al. in Defects in Microelectronic Materials and Devices (eds Fleetwood, D., Schrimpf, R. & Pantelides, S.) 615–669 (CRC Press, 2008).

  91. Carlos, W. E., Garces, N. Y., Glaser, E. R. & Fanton, M. A. Annealing of multivacancy defects in 4H-SiC. Phys. Rev. B 74, 235201 (2006).

    Article  CAS  Google Scholar 

  92. Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013).

    Article  CAS  Google Scholar 

  93. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

    Article  CAS  Google Scholar 

  94. Fuchs, F. et al. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 6, 7578 (2015).

    Article  CAS  Google Scholar 

  95. Wang, J. et al. High-efficiency generation of nanoscale single silicon vacancy defect array in silicon carbide. Phys. Rev. Appl. 7, 64021 (2017).

    Article  Google Scholar 

  96. Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).

    Article  CAS  Google Scholar 

  97. Son, N. T. et al. Divacancy in 4H-SiC. Phys. Rev. Lett. 96, 55501 (2006).

    Article  CAS  Google Scholar 

  98. Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151–156 (2014).

    Article  CAS  Google Scholar 

  99. Szász, K. et al. Spin and photophysics of carbon-antisite vacancy defect in 4H silicon carbide: a potential quantum bit. Phys. Rev. B 91, 121201 (2015).

    Article  CAS  Google Scholar 

  100. Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    Article  CAS  Google Scholar 

  101. Sörman, E. et al. Silicon vacancy related defect in 4H and 6H SiC. Phys. Rev. B 61, 2613 (2000).

    Article  Google Scholar 

  102. Falk, A. L. et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys. Rev. Lett. 112, 187601 (2014).

    Article  CAS  Google Scholar 

  103. Soltamov, V. A., Soltamova, A. A., Baranov, P. G. & Proskuryakov, I. I. Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC. Phys. Rev. Lett. 108, 226402 (2012).

    Article  Google Scholar 

  104. Wimbauer, T., Meyer, B. K., Hofstaetter, A., Scharmann, A. & Overhof, H. Negatively charged Si vacancy in 4H SiC: a comparison between theory and experiment. Phys. Rev. B 56, 7384–7388 (1997).

    Article  CAS  Google Scholar 

  105. Mizuochi, N. et al. Continuous-wave and pulsed EPR study of the negatively charged silicon vacancy with S = 3/2 and C3v symmetry in n-type 4H-SiC. Phys. Rev. B 66, 235202 (2002).

    Article  CAS  Google Scholar 

  106. Isoya, J. et al. EPR identification of intrinsic defects in SiC. Phys. Status Solidi 245, 1298–1314 (2008).

    Article  CAS  Google Scholar 

  107. Baranov, P. G. et al. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).

    Article  CAS  Google Scholar 

  108. Kraus, H. et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide. Nat. Phys. 10, 157–162 (2014).

    Article  CAS  Google Scholar 

  109. Klimov, P. V., Falk, A. L., Buckley, B. B. & Awschalom, D. D. Electrically driven spin resonance in silicon carbide color centers. Phys. Rev. Lett. 112, 87601 (2014).

    Article  CAS  Google Scholar 

  110. Soltamov, V. A. et al. Optically addressable silicon vacancy-related spin centers in rhombic silicon carbide with high breakdown characteristics and ENDOR evidence of their structure. Phys. Rev. Lett. 115, 247602 (2015).

    Article  CAS  Google Scholar 

  111. Falk, A. L. et al. Optical polarization of nuclear spins in silicon carbide. Phys. Rev. Lett. 114, 247603 (2015).

    Article  CAS  Google Scholar 

  112. Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 21046 (2017).

    Google Scholar 

  113. Jenny, J. R. et al. Development of large diameter high-purity semi-insulating 4H-SiC wafers for microwave devices. Mater. Sci. Forum 457, 35–40 (2004).

    Article  Google Scholar 

  114. Son, N. T., Carlsson, P., ul Hassan, J., Magnusson, B. & Janzén, E. Defects and carrier compensation in semi-insulating 4H-SiC substrates. Phys. Rev. B 75, 155204 (2007).

    Article  CAS  Google Scholar 

  115. Stanwix, P. L. et al. Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82, 201201 (2010).

    Article  CAS  Google Scholar 

  116. Kimoto, T., Nakazawa, S., Hashimoto, K. & Matsunami, H. Reduction of doping and trap concentrations in 4H–SiC epitaxial layers grown by chemical vapor deposition. Appl. Phys. Lett. 79, 2761 (2001).

    Article  CAS  Google Scholar 

  117. Danno, K., Nakamura, D. & Kimoto, T. Investigation of carrier lifetime in 4H-SiC epilayers and lifetime control by electron irradiation. Appl. Phys. Lett. 90, 202109 (2007).

    Article  CAS  Google Scholar 

  118. Yang, L.-P. et al. Electron spin decoherence in silicon carbide nuclear spin bath. Phys. Rev. B 90, 241203 (2014).

    Article  CAS  Google Scholar 

  119. Seo, H. et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935 (2016).

    Article  CAS  Google Scholar 

  120. Simin, D. et al. Locking of electron spin coherence above 20 ms in natural silicon carbide. Phys. Rev. B 95, 161201 (2017).

    Article  Google Scholar 

  121. Zaiser, S. et al. Enhancing quantum sensing sensitivity by a quantum memory. Nat. Commun. 7, 12279 (2016).

    Article  CAS  Google Scholar 

  122. Carter, S. G., Soykal, Ö. O., Dev, P., Economou, S. E. & Glaser, E. R. Spin coherence and echo modulation of the silicon vacancy in 4H-SiC at room temperature. Phys. Rev. B 92, 161202(R) (2015).

    Article  CAS  Google Scholar 

  123. Mizuochi, N. et al. EPR studies of the isolated negatively charged silicon vacancies in n-type 4H- and 6H-SiC: Identification of C_3v symmetry and silicon sites. Phys. Rev. B 68, 165206 (2003).

    Article  CAS  Google Scholar 

  124. Ivády, V. et al. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide. Phys. Rev. B 92, 115206 (2015).

    Article  CAS  Google Scholar 

  125. Klimov, P. V., Falk, A. L., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble. Sci. Adv. 1, e1501015 (2015).

    Article  Google Scholar 

  126. Ivády, V. et al. High-fidelity bidirectional nuclear qubit initialization in SiC. Phys. Rev. Lett. 117, 220503 (2016).

    Article  CAS  Google Scholar 

  127. Simin, D. et al. All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide. Phys. Rev. X 6, 31014 (2016).

    Google Scholar 

  128. Soykal, Ö. O., Dev, P. & Economou, S. E. Silicon vacancy center in 4H-SiC: electronic structure and spin-photon interfaces. Phys. Rev. B 93, 81207 (2016).

    Article  CAS  Google Scholar 

  129. Simin, D. et al. High-precision angle-resolved magnetometry with uniaxial quantum centers in silicon carbide. Phys. Rev. Appl. 4, 14009 (2015).

    Article  CAS  Google Scholar 

  130. Lee, S.-Y., Niethammer, M. & Wrachtrup, J. Vector magnetometry based on S = 3/2 electronic spins. Phys. Rev. B 92, 115201 (2015).

    Article  CAS  Google Scholar 

  131. Niethammer, M. et al. Vector magnetometry using silicon vacancies in 4H-SiC under ambient conditions. Phys. Rev. Appl. 6, 34001 (2016).

    Article  CAS  Google Scholar 

  132. Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    Article  CAS  Google Scholar 

  133. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 35002 (2017).

    Article  Google Scholar 

  134. Steinert, S. High sensitivity magnetic imaging using an array of spins in diamond. Rev. Sci. Instrum. 81, 43705 (2010).

    Article  CAS  Google Scholar 

  135. Alegre, T. P. M., Santori, C., Medeiros-Ribeiro, G. & Beausoleil, R. G. Polarization-selective excitation of nitrogen vacancy centers in diamond. Phys. Rev. B 76, 165205 (2007).

    Article  CAS  Google Scholar 

  136. Lai, N. D., Zheng, D., Jelezko, F., Treussart, F. & Roch, J.-F. Influence of a static magnetic field on the photoluminescence of an ensemble of nitrogen-vacancy color centers in a diamond single-crystal. Appl. Phys. Lett. 95, 133101 (2009).

    Article  CAS  Google Scholar 

  137. Dmitriev, A. K. & Vershovskii, A. K. Concept of a microscale vector magnetic field sensor based on nitrogen-vacancy centers in diamond. J. Opt. Soc. Am. B 33, B1–B4 (2016).

    Article  CAS  Google Scholar 

  138. Pham, L. M. et al. Enhanced metrology using preferential orientation of nitrogen-vacancy centers in diamond. Phys. Rev. B 86, 121202 (2012).

    Article  CAS  Google Scholar 

  139. Nagy, R. et al. Quantum properties of dichroic silicon vacancies in silicon carbide. Phys. Rev. Applied 9, 034022 (2018).

  140. Kraus, H. et al. Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide. Sci. Rep. 4, 5303 (2014).

    Article  CAS  Google Scholar 

  141. Choi, J. H. et al. Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching. J. Phys. D. Appl. Phys. 45, 235204 (2012).

    Article  CAS  Google Scholar 

  142. Radulaski, M. et al. Scalable quantum photonics with single color centers in silicon carbide. Nano Lett. 17, 1782–1786 (2017).

    Article  CAS  Google Scholar 

  143. Song, B.-S., Yamada, S., Asano, T. & Noda, S. Demonstration of two-dimensional photonic crystals based on silicon carbide. Opt. Express 19, 11084–11089 (2011).

    Article  CAS  Google Scholar 

  144. Radulaski, M. et al. Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes. ACS Photon. 2, 14 (2014).

    Article  CAS  Google Scholar 

  145. Calusine, G., Politi, A. & Awschalom, D. D. Silicon carbide photonic crystal cavities with integrated color centers. Appl. Phys. Lett. 105, 11123 (2014).

    Article  CAS  Google Scholar 

  146. Radulaski, M. et al. Photonic crystal cavities in cubic polytype silicon carbide films. Opt. Express 21, 32623–32629 (2013).

    Article  Google Scholar 

  147. Cardenas, J. et al. High Q SiC microresonators. Opt. Express 21, 16882–16887 (2013).

    Article  CAS  Google Scholar 

  148. Lu, X., Lee, J. Y., Feng, P. X.-L. & Lin, Q. High Q silicon carbide microdisk resonator. Appl. Phys. Lett. 104, 181103 (2014).

    Article  CAS  Google Scholar 

  149. Di Cioccio, L., Le Tiec, Y., Letertre, F., Jaussaud, C. & Bruel, M. Silicon carbide on insulator formation using the Smart Cut process. Electron. Lett. 32, 1144–1145 (1996).

    Article  Google Scholar 

  150. Magyar, A. P., Bracher, D., Lee, J. C., Aharonovich, I. & Hu, E. L. High quality SiC microdisk resonators fabricated from monolithic epilayer wafers. Appl. Phys. Lett. 104, 51109 (2014).

    Article  CAS  Google Scholar 

  151. Bracher, D. O. & Hu, E. L. in Proceedings of SPIE Vol. 9762 https://doi.org/10.1117/12.2211230 (San Francisco, CA, USA, 2016).

  152. Calusine, G., Politi, A. & Awschalom, D. D. Cavity-enhanced measurements of defect spins in silicon carbide. Phys. Rev. Appl. 6, 14019 (2016).

    Article  CAS  Google Scholar 

  153. Bracher, D. O., Zhang, X. & Hu, E. L. Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center. Proc. Natl Acad. Sci. USA 114, 4060–4065 (2017).

    Article  CAS  Google Scholar 

  154. Yamaguchi, Y. et al. Analysis of Q-factors of structural imperfections in triangular cross-section nanobeam photonic crystal cavities. J. Opt. Soc. Am. B 32, 1792–1796 (2015).

    Article  CAS  Google Scholar 

  155. von Bardeleben, H. J., Cantin, J. L., Rauls, E. & Gerstmann, U. Identification and magneto-optical properties of the NV center in 4H-SiC. Phys. Rev. B 92, 64104 (2015).

    Article  CAS  Google Scholar 

  156. von Bardeleben, H. J. et al. NV centers in 3C, 4H, and 6H silicon carbide: a variable platform for solid-state qubits and nanosensors. Phys. Rev. B 94, 121202 (2016).

    Article  Google Scholar 

  157. Baur, J., Kunzer, M. & Schneider, J. Transition metals in SiC polytypes, as studied by magnetic resonance techniques. Phys. Status Solidi 162, 153–172 (1997).

    Article  CAS  Google Scholar 

  158. Lee, K. M., Dang, L. S., Watkins, G. D. & Choyke, W. J. Optically detected magnetic resonance study of SiC:Ti. Phys. Rev. B 32, (2273–2284 (1985).

    Google Scholar 

  159. Gällström, A. et al. Optical properties and Zeeman spectroscopy of niobium in silicon carbide. Phys. Rev. B 92, 75207 (2015).

    Article  CAS  Google Scholar 

  160. Koehl, W. F. et al. Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN. Phys. Rev. B 95, 35207 (2017).

    Article  Google Scholar 

  161. Seo, H., Ma, H., Govoni, M. & Galli, G. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies. Phys. Rev. Mater. 1, 75002 (2017).

    Article  Google Scholar 

  162. Lohrmann, A. et al. Activation and control of visible single defects in 4H-, 6H-, and 3C-SiC by oxidation. Appl. Phys. Lett. 108, 021107 (2016).

    Article  CAS  Google Scholar 

  163. Lienhard, B. et al. Bright and photostable single-photon emitter in silicon carbide. Optica 3, 768–774 (2016).

    Article  CAS  Google Scholar 

  164. Lohrmann, A. et al. Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015).

    Article  CAS  Google Scholar 

  165. Cochrane, C. J., Blacksberg, J., Anders, M. A. & Lenahan, P. M. Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Sci. Rep. 6, 37077 (2016).

    Article  CAS  Google Scholar 

  166. Castelletto, S. et al. Quantum-confined single photon emission at room temperature from SiC tetrapods. Nanoscale 6, 10027–10032 (2014).

    Article  CAS  Google Scholar 

  167. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  168. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  169. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  170. Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

    Article  CAS  Google Scholar 

  171. Chiu, M.-H. et al. Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649–9656 (2014).

    Article  CAS  Google Scholar 

  172. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  173. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 9, 257–261 (2014).

    Article  CAS  Google Scholar 

  174. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  CAS  Google Scholar 

  175. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    Article  CAS  Google Scholar 

  176. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

    Article  CAS  Google Scholar 

  177. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  178. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  179. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  180. Lundeberg, M. B. & Folk, J. A. Harnessing chirality for valleytronics. Science 346, 422–423 (2014).

    Article  CAS  Google Scholar 

  181. Wang, G. et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 90, 75413 (2014).

    Article  CAS  Google Scholar 

  182. Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

    Article  Google Scholar 

  183. O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nat. Phot. 3, 687–695 (2009).

    Article  CAS  Google Scholar 

  184. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article  CAS  Google Scholar 

  185. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article  CAS  Google Scholar 

  186. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  CAS  Google Scholar 

  187. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article  CAS  Google Scholar 

  188. Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

    Article  CAS  Google Scholar 

  189. Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015).

    Article  CAS  Google Scholar 

  190. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    Article  CAS  Google Scholar 

  191. Wong, D. et al. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nat. Nanotechnol. 10, 949–953 (2015).

    Article  CAS  Google Scholar 

  192. Wang, X., Sun, G., Li, N. & Chen, P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 45, 2239–2262 (2016).

    Article  CAS  Google Scholar 

  193. Wei, G. et al. Size-tunable lateral confinement in monolayer semiconductors. Sci. Rep. 7, 3324 (2017).

    Article  CAS  Google Scholar 

  194. Kormányos, A., Zólyomi, V., Drummond, N. D. & Burkard, G. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 11034 (2014).

    Google Scholar 

  195. Wu, Y., Tong, Q., Liu, G.-B., Yu, H. & Yao, W. Spin-valley qubit in nanostructures of monolayer semiconductors: Optical control and hyperfine interaction. Phys. Rev. B 93, 45313 (2016).

    Article  CAS  Google Scholar 

  196. Chakraborty, C., Goodfellow, K. M. & Nick Vamivakas, A. Localized emission from defects in MoSe2 layers. Opt. Mater. Express 6, 2081–2087 (2016).

    Article  CAS  Google Scholar 

  197. Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016).

    Article  CAS  Google Scholar 

  198. Palacios-Berraquero, C. et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016).

    Article  CAS  Google Scholar 

  199. Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

    Article  CAS  Google Scholar 

  200. Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).

    Article  CAS  Google Scholar 

  201. Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

    Article  CAS  Google Scholar 

  202. Sajid, A., Reimers, J. R. & Ford, M. J. Defect states in hexagonal boron nitride: Assignments of observed properties and prediction of properties relevant to quantum computation. Phys. Rev. B 97, 64101 (2018).

    Article  Google Scholar 

  203. Schwarz, S. et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater. 3, 25038 (2016).

    Article  CAS  Google Scholar 

  204. Clark, G. et al. Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett. 16, 3944–3948 (2016).

    Article  CAS  Google Scholar 

  205. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  CAS  Google Scholar 

  206. Palmer, J. Quantum technology is beginning to come into its own. The Economist https://www.economist.com/news/essays/21717782-quantum-technology-beginning-come-its-own (2017).

  207. Lee, J. C. et al. Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity. Appl. Phys. Lett. 105, 261101 (2014).

    Article  CAS  Google Scholar 

  208. Riedrich-Möller, J. et al. Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett. 14, 5281–5287 (2014).

    Article  CAS  Google Scholar 

  209. Albrecht, R. et al. Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity. Appl. Phys. Lett. 105, 073113 (2014).

    Article  CAS  Google Scholar 

  210. Janitz, E. et al. Fabry-Perot microcavity for diamond-based photonics. Phys. Rev. A 92, 43844 (2015).

    Article  CAS  Google Scholar 

  211. Radko, I. P. et al. Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond. Opt. Express 24, 27715–27725 (2016).

    Article  CAS  Google Scholar 

  212. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article  CAS  Google Scholar 

  213. Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    Article  CAS  Google Scholar 

  214. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340 (2016).

    Article  CAS  Google Scholar 

  215. Anisimov, A. N. et al. Optical thermometry based on level anticrossing in silicon carbide. Sci. Rep. 6, 33301 (2016).

    Article  CAS  Google Scholar 

  216. Son, N. T. et al. Photoluminescence and Zeeman effect in chromium-doped 4H and 6H SiC. J. Appl. Phys. 86, 4348–4353 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Research Council (ERC) Consolidator grant PHOENICS agreement no. 617985, the Engineering and Physical Sciences Research Council (EPSRC) National Quantum Technologies Programme NQIT EP/M013243/1, Korea Institute of Science and Technology (KIST) institutional programs (Grants No. 2E27231, 2E27110), the Army Research Laboratory Center for Distributed Quantum Information (CDQI) and the National Science Foundation program ACQUIRE: “Scalable Quantum Communications with Error-Corrected Semiconductor Qubits”, NSF EFRI EFMA-1542707, NSF CAREER DMR 1553788 and AFOSR FA9550-16-1-0020. S.Y.L. and J.W. thank S. Nguyen and B-S. Song for comments.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article and wrote and edited versions of the text.

Corresponding author

Correspondence to Mete Atatüre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atatüre, M., Englund, D., Vamivakas, N. et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater 3, 38–51 (2018). https://doi.org/10.1038/s41578-018-0008-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0008-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing