Skip to main content
Log in

Electrically controllable position-controlled color centers created in SiC pn junction diode by proton beam writing

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single photon sources (SPS) are an important building block for realizing quantum technologies for computing, communication, and sensing. For industrialization, electrically controllable color centers acting as SPS are required. We have demonstrated the creation of electrically controllable silicon vacancies (VSis) in the SiC pn junction diode fabricated by proton beam writing (PBW). PBW was successfully used to introduce electrically controllable VSi without degradation of the diode performance. The dependence of the electroluminescence (EL) and photoluminescence (PL) intensities from VSi on H+ fluence revealed that the emission efficiency of EL is less than that of PL. For EL, the supply of carriers (electrons and/or holes) was restricted due to the resistive region around each VSi introduced by PBW. The results suggest that further improvement in the VSi creation process without defects acting as majority carrier removal centers (highly resistive region) and nonradiative centers by optimization of PBW conditions are key points to realize highly sensitive quantum sensors using VSi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. The IBM quantum experience: Available at: http://www.research.ibm.com/quantum (accessed May 22, 2018).

  2. S. Boixo, S.V. Isakov, V.N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M.J. Bremner, J.M. Martinis, and H. Neven: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595 (2018).

    Article  CAS  Google Scholar 

  3. S. Olmschenk, K.C. Younge, D.L. Moehring, D.N. Matsukevich, P. Maunz, and C. Monroe: Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).

    Article  Google Scholar 

  4. K. Ichimura: A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode. Opt. Commun. 196, 119 (2001).

    Article  CAS  Google Scholar 

  5. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, and A.C. Gossard: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005).

    Article  CAS  Google Scholar 

  6. G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P.R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup: Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648 (2008).

    Article  CAS  Google Scholar 

  7. G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J.F. Du, P. Neumann, and J. Wrachtrup: Quantum error correction in a solid-state hybrid spin register. Nature 506, 204 (2014).

    Article  CAS  Google Scholar 

  8. F. Dolde, H. Fedder, M.W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L.C.L. Hollenberg, F. Jelezko, and J. Wrachtrup: Electric-field sensing using single diamond spins. Nat. Phys. 7, 459 (2011).

    Article  CAS  Google Scholar 

  9. J.P. Tetienne, N. Dontschuk, D.A. Broadway, A. Stacey, D.A. Simpson, and L.C.L. Hollenberg: Quantum imaging of current flow in graphene. Sci. Adv. 3, e1602429 (2017).

    Article  Google Scholar 

  10. F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, and G.V. Astakhov: Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 6, 7578 (2015).

    Article  CAS  Google Scholar 

  11. M. Widmann, S.Y. Lee, T. Rendler, N.T. Son, H. Fedder, S. Paik, L.P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S.A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup: Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164 (2015).

    Article  CAS  Google Scholar 

  12. S. Castelletto, B.C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima: A silicon carbide room-temperature single-photon source. Nat. Mater. 13, 151 (2014).

    Article  CAS  Google Scholar 

  13. D.J. Christle, A.L. Falk, P. Andrich, P.V. Klimov, J. Ul Hassan, N.T. Son, E. Janzén, T. Ohshima, and D.D. Awschalom: Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160 (2015).

    Article  CAS  Google Scholar 

  14. C.F. de las Casas, D.J. Christle, J.U. Hassan, T. Ohshima, N.T. Son, and D.D. Awschalom: Stark tuning and electrical charge state control of single divacancies in silicon carbide. Appl. Phys. Lett. 111, 262403 (2017).

    Article  Google Scholar 

  15. A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T.J. Karle, A. Gali, S. Prawer, J.C. McCallum, and B.C. Johnson: Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015).

    Article  CAS  Google Scholar 

  16. A. Lohrmann, S. Castelletto, J.R. Klein, T. Ohshima, M. Bosi, M. Negri, D.W.M. Lau, B.C. Gibson, S. Prawer, J.C. McCallum, and B.C. Johnson: Activation and control of visible single defects in 4H-, 6H-, and 3C-SiC by oxidation. Appl. Phys. Lett. 108, 021107 (2016).

    Article  Google Scholar 

  17. Y. Abe, T. Umeda, M. Okamoto, R. Kosugi, S. Harada, M. Haruyama, W. Kada, O. Hanaizumi, S. Onoda, and T. Ohshima: Single photon sources in 4H-SiC metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 112, 031105 (2018).

    Article  Google Scholar 

  18. P.G. Baranov, A.P. Bundakova, and A.A. Soltamova: Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).

    Article  Google Scholar 

  19. D. Simin, V.A. Soltamov, A.V. Poshakinskiy, A.N. Anisimov, R.A. Babunts, D.O. Tolmachev, E.N. Mokhov, M. Trupke, S.A. Tarasenko, A. Sperlich, P.G. Baranov, V. Dyakonov, and G.V. Astakhov: All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide. Phys. Rev. X 6, 031014 (2016).

    Google Scholar 

  20. M. Niethammer, M. Widmann, S-Y. Lee, P. Stenberg, O. Kordina, T. Ohshima, N.T. Son, E. Janzén, and J. Wrachtrup: Vector magnetometry using silicon vacancies in 4H-SiC under ambient conditions. Phys. Rev. Appl. 6, 034001 (2016).

    Article  Google Scholar 

  21. C.J. Cochrane, J. Blacksberg, M.A. Anders, and P.M. Lenahan: Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Sci. Rep. 6, 37077 (2016).

    Article  CAS  Google Scholar 

  22. A.N. Anisimov, D. Simin, V.A. Soltamov, S.P. Lebedev, P.G. Baranov, G.V. Astakhov, and V. Dyakonov: Optical thermometry based on level anticrossing in silicon carbide. Sci. Rep. 6, 33301 (2016).

    Article  CAS  Google Scholar 

  23. F. Fuchs, V.A. Soltamov, S. Väth, P.G. Baranov, E.N. Mokhov, G.V. Astakhov, and V. Dyakonov: Silicon carbide light-emitting diode as a prospective room temperature source for single photons. Sci. Rep. 3, 1637 (2013).

    Article  CAS  Google Scholar 

  24. H. Kraus, D. Simin, C. Kasper, Y. Suda, S. Kawabata, W. Kada, T. Honda, Y. Hijikata, T. Ohshima, V. Dyakonov, and G.V. Astakhov: Three-dimensional proton beam writing of optically active coherent vacancy spins in silicon carbide. Nano Lett. 17, 2865 (2017).

    Article  CAS  Google Scholar 

  25. T. Ohshima, T. Honda, S. Onoda, T. Makino, M. Haruyama, T. Kamiya, T. Satoh, Y. Hijikata, W. Kada, O. Hanaizumi, A. Lohrmann, J.R. Klein, B.C. Johnson, J.C. McCallum, S. Castelletto, B.C. Gibson, H. Kraus, V. Dyakonov, and G.V. Astakhov: Creation and functionalization of defects in SiC by proton beam writing. Mater. Sci. Forum 897, 233 (2017).

    Article  Google Scholar 

  26. SRIM—The stopping and range of ions in matter: Available at: http://www.srim.org/ (accessed May 22, 2018).

  27. H. Kato, M. Wolfer, C. Schreyvogel, M. Kunzer, W.M. Sebert, H. Obloh, S. Yamasaki, and C. Nebel: Tunable light emission from nitrogen-vacancy centers in single crystal diamond PIN diodes. Appl. Phys. Lett. 102, 151101 (2013).

    Article  Google Scholar 

  28. L. Patrick and W.J. Choyke: Photoluminescence of radiation defects in ion-implanted 6H SiC. Phys. Rev. B 5, 3253 (1972).

    Article  Google Scholar 

  29. A. Lohrmann, S. Pezzagna, I. Dobrinets, P. Spinicelli, V. Jacques, J-F. Roch, J. Meijer, and A.M. Zaitsev: Diamond based light-emitting diode for visible single-photon emission at room temperature. Appl. Phys. Lett. 99, 251106 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was partially supported by JSPS KAKENHI Grant No. 17H01056. Part of this study was carried out under the framework of IAEA CRP F11020. This study was partially supported by KIST Open Research Program (2E27231). We would like to appreciate Dr. Wataru Kada of Gunma University for the support on PBW experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Yamazaki.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, Y., Chiba, Y., Makino, T. et al. Electrically controllable position-controlled color centers created in SiC pn junction diode by proton beam writing. Journal of Materials Research 33, 3355–3361 (2018). https://doi.org/10.1557/jmr.2018.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.302

Navigation