Skip to main content
Log in

QKD system with fast active optical path length compensation

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We develop a quantum key distribution (QKD) system with fast active optical path length compensation. A rapid and reliable active optical path length compensation scheme is proposed and applied to a plug-and-play QKD system. The system monitors changes in key rates and controls it is own operation automatically. The system achieves its optimal performance within three seconds of operation, which includes a sifted key rate of 5.5 kbps and a quantum bit error rate of less than 2% after an abrupt temperature variation along the 25 km quantum channel. The system also operates well over a 24 h period while completing more than 60 active optical path length compensations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).

    Article  ADS  Google Scholar 

  2. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).

    Article  ADS  Google Scholar 

  3. F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004).

    Article  ADS  Google Scholar 

  4. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Light Sci. Appl. 5, e16144 (2016).

    Article  Google Scholar 

  5. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, 2016, arXiv: 1609.09184.

  6. M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  7. C. H. Bennett, G. Brassad, in Quantum cryptography: Public key distribution and coin tossing: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, Bangalore, 1984), pp. 175–179.

    Google Scholar 

  8. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  9. C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  10. H. K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  11. T. G. Noh, Phys. Rev. Lett. 103, 230501 (2009), arXiv: 0809.3979.

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Laing, V. Scarani, J. G. Rarity, and J. L. O’Brien, Phys. Rev. A 82, 012304 (2010), arXiv: 1003.1050.

    Article  ADS  Google Scholar 

  13. H. K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012), arXiv: 1109.1473.

    Article  ADS  Google Scholar 

  14. S. Wang, Z. Q. Yin, W. Chen, D. Y. He, X. T. Song, H. W. Li, L. J. Zhang, Z. Zhou, G. C. Guo, and Z. F. Han, Nat. Photon. 9, 832 (2015).

    Article  ADS  Google Scholar 

  15. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, Opt. Express 16, 18790 (2008), arXiv: 0810.1069.

    Article  ADS  Google Scholar 

  16. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, Appl. Phys. Lett. 96, 161102 (2010), arXiv: 1005.4573.

    Article  ADS  Google Scholar 

  17. P. D. Townsend, Nature 385, 47 (1997).

    Article  ADS  Google Scholar 

  18. W. Chen, Z. F. Han, T. Zhang, H. Wen, Z. Q. Yin, F. X. Xu, Q. L. Wu, Y. Liu, Y. Zhang, X. F. Mo, Y. Z. Gui, G. Wei, and G. C. Guo, IEEE Photon. Tech. Lett. 21, 575 (2009).

    Article  ADS  Google Scholar 

  19. T. Y. Chen, J. Wang, H. Liang, W. Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W. Q. Cai, L. Ju, L. K. Chen, L. J. Wang, Y. Gao, K. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, Opt. Express 18, 27217 (2010).

    Article  ADS  Google Scholar 

  20. S. Wang, W. Chen, Z. Q. Yin, Y. Zhang, T. Zhang, H. W. Li, F. X. Xu, Z. Zhou, Y. Yang, D. J. Huang, L. J. Zhang, F. Y. Li, D. Liu, Y. G. Wang, G. C. Guo, and Z. F. Han, Opt. Lett. 35, 2454 (2010), arXiv: 1203.4321.

    Article  ADS  Google Scholar 

  21. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, Opt. Express 19, 10387 (2011), arXiv: 1103.3566.

    Article  ADS  Google Scholar 

  22. M. S. Lee, B. K. Park, M. K. Woo, C. H. Park, Y. S. Kim, S. W. Han, and S. Moon, Phys. Rev. A 94, 062321 (2016).

    Article  ADS  Google Scholar 

  23. D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J. B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, and H. Zbinden, New J. Phys. 13, 123001 (2011), arXiv: 1203.4940.

    Article  ADS  Google Scholar 

  24. P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, Opt. Express 20, 14030 (2012).

    Article  ADS  Google Scholar 

  25. K. Yoshino, T. Ochi, M. Fujiwara, M. Sasaki, and A. Tajima, Opt. Express 21, 31395 (2013).

    Article  ADS  Google Scholar 

  26. K. Shimizu, T. Honjo, M. Fujiwara, T. Ito, K. Tamaki, S. Miki, T. Yamashita, H. Terai, Z. Wang, and M. Sasaki, J. Lightwave Tech. 32, 141 (2014).

    Article  ADS  Google Scholar 

  27. S. Wang, W. Chen, Z. Q. Yin, H. W. Li, D. Y. He, Y. H. Li, Z. Zhou, X. T. Song, F. Y. Li, D. Wang, H. Chen, Y. G. Han, J. Z. Huang, J. F. Guo, P. L. Hao, M. Li, C. M. Zhang, D. Liu, W. Y. Liang, C. H. Miao, P. Wu, G. C. Guo, and Z. F. Han, Opt. Express 22, 21739 (2014), arXiv: 1409.1568.

    Article  ADS  Google Scholar 

  28. A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, Opt. Express 23, 7583 (2015).

    Article  ADS  Google Scholar 

  29. S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, Opt. Lett. 37, 1008 (2012), arXiv: 1203.4323.

    Article  ADS  Google Scholar 

  30. I. Choi, R. J. Young, and P. D. Townsend, New J. Phys. 13, 063039 (2011).

    Article  ADS  Google Scholar 

  31. H. F. Zhang, J. Wang, K. Cui, C. L. Luo, S. Z. Lin, L. Zhou, H. Liang, T. Y. Chen, K. Chen, and J. W. Pan, J. Lightwave Tech. 30, 3226 (2012), arXiv: 1301.2383.

    Article  ADS  Google Scholar 

  32. L. J. Zhang, Y. G. Wang, Z. Q. Yin, W. Chen, Y. Yang, T. Zhang, D. J. Huang, S. Wang, F. Y. Li, and Z. F. Han, Chin. Sci. Bull. 56, 2305 (2011).

    Article  Google Scholar 

  33. J. Young. QKD system detector autocalibration based on bit-error rate, US Patent, US 11/110,227 (2005-04-20).

    Google Scholar 

  34. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).

    Article  ADS  Google Scholar 

  35. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, Electron. Lett. 34, 2116 (1998).

    Article  Google Scholar 

  36. Altera Incorporation, Stratix III Device Handbook (Altera Inc., 2010).

    Google Scholar 

  37. Micrel Incorporation, SY89295U Datasheet, (Micrel Inc., 2011).

    Google Scholar 

  38. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, Appl. Phys. Lett. 92, 201104 (2008), arXiv: 0805.3414.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Han.

Additional information

This work was supported by the ICT R&D programs of Ministry of Science, ICT and Future Planning/Institute for Information & Communications Technology Promotion (Grant No. B0101-16-1355), the Korea Institute of Science and Technology research program (Grant No. 2E27231), and Korea Institute of Science and Technology-Electronics And Telecommunications Research Institute research program (Grant No. 2V05340).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B.K., Lee, M.S., Woo, M.K. et al. QKD system with fast active optical path length compensation. Sci. China Phys. Mech. Astron. 60, 060311 (2017). https://doi.org/10.1007/s11433-017-9026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9026-8

Keywords

PACS number(s)

Navigation